TGS 826 - for the Detection of Ammonia

Features:

* High sensitivity to ammonia

FIGARC

- * Quick response to low concentrations of ammonia
- * Uses simple electrical circuit
- * Ceramic base resistant to severe environment

The sensing element of TGS826 is a metal oxide semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

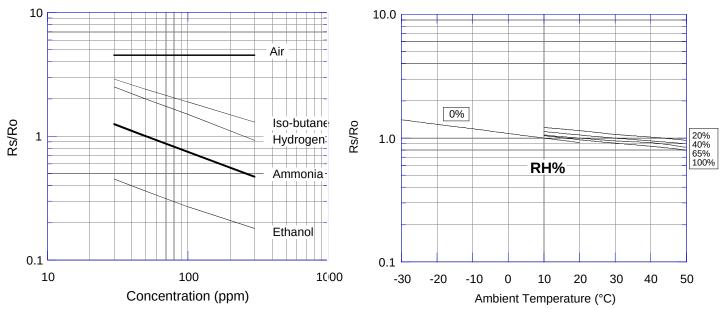
The TGS826 has high sensitivity to ammonia gas. The sensor can detect concentrations as low as 30ppm in the air and is ideally suited to critical safety-related applications such as the detection of ammonia leaks in refrigeration systems and ammonia detection in the agricultural field.

The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows:

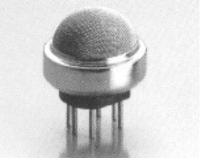
Rs = Sensor resistance of displayed gases at various concentrations

Ro = Sensor resistance at 50ppm of ammonia

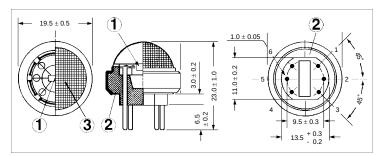
Sensitivity Characteristics:


Applications:

- * Ammonia leak detection in refrigerators
- * Ventilation control for the agricultural and poultry industries


The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows:

Rs = Sensor resistance at 50ppm of ammonia at various temperatures/humidities Ro = Sensor resistance at 50ppm of ammonia at 20°C and 65% R.H.


Temperature/Humidity Dependency:

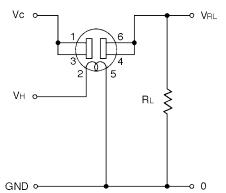
IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

Structure and Dimensions:

$(\mathbf{1})$ Sensing Element:

- Metal oxide is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.
- (**2**) Sensor Base:
 - Alumina ceramic
- (**3**) Flame Arrestor:
 - 100 mesh SUS 316 double gauze

Pin Connection and Basic Measuring Circuit:


The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above) Since the sensor has a polarity, DC voltage is always required for circuit voltage (a white dot indicates pin).2When the sensor is connected as shown in the basic circuit, output across the Load Resistor (VkL) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

Specifications:

Model number			TGS 826	
Target gases			Ammonia	
Typical detection range			30 ~ 300 ppm	
Standard circuit conditions	Heater Voltage	Vн	5.0±0.2V DC/AC	
	Circuit voltage	Vc	Max. 24V (DC only)	Ps ≤ 15mW
	Load resistance	R∟	Variable	Ps ≤ 15mW
Electrical characteristics under standard test conditions	Heater resistance	Rн	$30\pm3\Omega$ at room temp.	
	Heater current	Ін	167mA	
	Heater power consumption	Рн	833mW	VH = 5.0V DC
	Sensor resistance	Rs	20~100kΩ in 50ppm ammonia	
	Sensitivity (change ratio of Rs)		0.55 ± 0.15	<u>Rs (150ppm)</u> Rs (50ppm)
Standard test conditions	Test gas conditions		Ammonia in air at 20±2°C, 65±5%RH	
	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC RL = 33kΩ±1%	
	Conditioning period before test		7 days	

Diltronic
info@diltronic.com
(33) 01 34 51 33 00

Basic Measuring Circuit:

Pin #2 is indicated by a white dot on the sensor's base.

Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = \left(\frac{V_{C}}{V_{RL}} - 1\right) \times R_{L}$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$Ps = \frac{Vc^2 \times Rs}{(Rs + RL)^2}$$

Special Note: A more narrowly defined range of Rs or Rs/Ro will be indicated on each production lot (see Appendix). Preselected ranges of Rs or Rs/Ro are not available.