MEMS Tilt Angle Sensor

THD2000Z Series

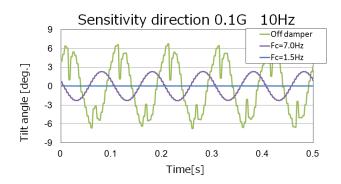
THD2000Z-Series industrial inclinometers are high performance sensors used MEMS accelerometer to determine inclination in X and Y axes with excellent precision. THD2000Z is compact size and it has high vibration resistance.

· Dual Axis Measurement : Up to ±60°

· High accuracy: Absolute Linearity <±1%FS

Stable Temperature Characteristics

•High Vibration Resistance : THD2000Z has no mechanical resonance

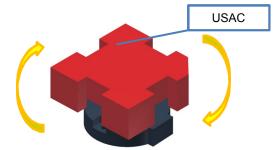

point in the detecting element.

It is less subject to vibration.

· User-friendly Functions : Resetting Index Point,

Choice of Digital Damping Control Function

[Choice of Digital Damping Control Function]



THD2000Z series implements the digital filter that would remove external noise to give the user a choice of certain filter factor from 16 available settings.

Existing inclinometers have to be add extra electrical low-pass filter or mechanical damping structure.

THD2000Z apply digital filter. It makes wider choice of cut-off frequency and easy to design frequency response.

[Easy Resetting Function for Index Point(0°)]

Touch USAC 5 times each 90° CCW rotatoin to THD2000Z.

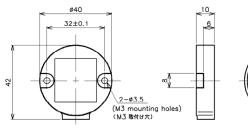
Using command control by RS-485, index point (0 $^{\circ}$) can be reset ($\pm 5^{\circ}$ max./horizontality). Moreover using User-Settable Adjustment Card (USAC) ,index point (0 $^{\circ}$) can be reset without any electrical connection.

*Notes:

- USAC is optional item.
- Resetting index ponint by USAC type is option.

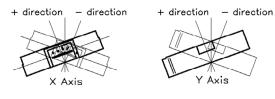
Please choose "THD20xxx-xxK".

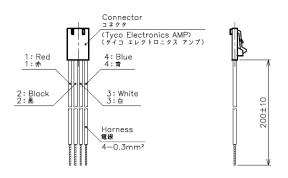
- Voltage ratio output type cannot be changed by command control.


[Serial communication Function]

This series has RS485 interface model. Using RS485 serial interface command, the following functions will be able to be u

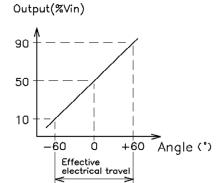
- 1. Retrieving of electrical angle position.
- 2. Retrieving of Serial number.
- 3. Teach-in setting of index (0°) point. (Option)
- 4. Changing baud rate. (Option)
- 5. Changing output cycle of serial data. (Option)

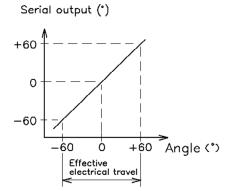

[mm]


Tarminal, 4pin,P=2.54 入出力讀子

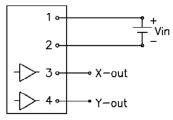
Housing : Plastic, Bulit-in Connector Connector :TE 104257-3

[Tilt Angle Direction]

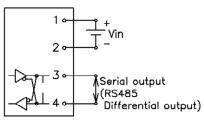

[Accessory]



[Output Characteristics]

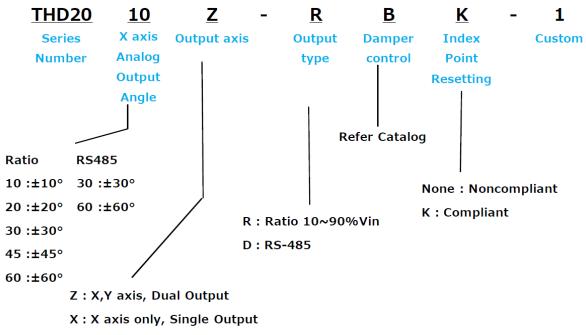

Voltage Ratio

Serial RS-485



[Schematic]

• 1,2,3,4:Terminal No.


• 1,2,3,4:Terminal No.

[Specifications]

		Voltage Ratio	Serial (RS-485)	
Electrial Travel		±10°, ±20°. ±30°. ±45°. ±60°	±60°(±30°)	
		Separate choice of X and Y axis (Option)		
Absolute Linearity		±1%FS		
Input Voltage		DC 5±0.25V		
Current Consumption		Steady-state: 20mA	Steady-state: 30mA	
Output Range		10∼90%Vin	_	
Output Resolution		12bit equivalent	0.006° (Not included Noise)	
Response Time		Step Response (Time Constant): 443ms (Std.)		
		Selectable 16 steps during 70ms~900ms (Option)		
Temp. Characteristic	0°position	±0.2°	±0.2°	
-30∼+85°C	Tilt Angle			
(25°C std.)		±20°: ±1.2°	±10°: 0.6°	
(20 0 010.)		±30°: ±2.1°	±60°: 4.4°	
		±45°: ±3.6°	100	
		±60°: ±6.0°		
EMS		IEC61000-4-3 : Level 3(10V/m)		
EMI		IEC61000-4-6 : CISPR22_A_10m		
ESD		IEC61000-4-2: ±16kV		
Operating Temp. Range		-30∼85℃		
Vibration		70m/s 2 5 \sim 500Hz (10min.) 2 hours		
Shock		1,000m/s ² , Half sine wave 6ms		
IP Grade		IP40		
Index point Resetting		Index point (±5°max/ horizontality) resetting. (Option)		

[Temperature Characteristics]

By our unique technology, THD2000Z series is individually conpensented temperature characteristics each unit. THD2000Zseries realized stable temperature characteristics.

Y: Y axis only, Single Output

Cut-off frequency and Time constant against Damper time constant are shown the below table. It is possible to choose the best Damper time constant by operating speed and vibration condition.

Part No.	Level	Cut-off frequency	Time constant
0	0	11.2Hz	60ms
1	1	9.27Hz	114ms
2	2	7.65Hz	126ms
3	3	6.32Hz	140ms
4	4	5.21Hz	156ms
5	5	4.30Hz	181ms
6	6	3.55Hz	205ms
7	7	2.93Hz	246ms
8	8	2.42Hz	277ms
9	9	2.00Hz	321ms
Α	10	1.65Hz	378ms
В	11	1.36Hz	443ms(Standard)
С	12	1.21Hz	532ms
D	13	0.92Hz	627ms
E	14	0.76Hz	749ms
F	15	0.62Hz	900ms

[Handling Instruction]

- Hall-IC sensor is impossible to measure resistance value as a variable resistor.
- Use this sensor in the place where is protected from ESD.
- Under vibration condition, angle may not measured accurately.
- In certain temperature environment, output at 0° may be shifed by aging effect.