Wire clamp type DC split sensor

For clamp mounting to wire, split type (corresponding to bi-polar power supply, $50 \sim 500 A$)

Model **HCS-APCLS** series

(Features)

- Corresponding to ± 15V control power supply
- Possible to discriminate the direction by 0 ± 4V output
- Possible to measure with isolation
- Split type with unification of sensor and amplifier, one touch clamp structure to wire

型式	寸 法					
型 式	Α	Н	h	В	С	d
HCS-10-50APCLS	23	38.5	27	26	13.5	φ10
HCS-16-100APCLS	29	44.5	30	31	18.5	φ16
HCS-24-250APCLS	45	64	39	34	22	φ24
HCS-36-500APCLS	57	80	49	38	22	φ36

This product needs $\pm 15 \text{V}$ (+15V and -15V DC bi-polar power supply) as control power supply. Even though the case of current detection of only plus direction, ±15V needs. In any case, it is not operated with only +15V

(Specification)

Model	HCS-10-50APCLS	HCS-16-100APCLS	HCS-24-250APCLS	HCS-36-500APCLS			
Rating current (FS)	± 50A	± 100A	± 250A	± 500A			
Maximum current	± 150A	± 150A	± 625A	± 1250A			
Output voltage	\pm 4V/Rating current (Recommended load resistor \geq 10k Ω)						
Residual voltage	Within ± 30mV (no lo	oad)	Within ± 20mV (no load)				
Noise level	Less than 20mVp-p	(no load)	Less than 10mVp-p (no load)				
Accuracy	Within ± 1%FS						
Linearity	Within ± 1%FS						
Hysteresis(FS→0)	Within ± 15mV						
Response time	Less than 3 μ s (at di/dt = FS/2 μ s)						
Output voltage temperature coefficient	± 0.1%/°C typ						
Residual voltage temperature coefficient	± 1mV ∕°C typ						
Power supply	DC ± 15V ± 5% (25mA typ) bi-polar power supply						
Withstand voltage	AC1500V, 1min (Aperture-output wire end in a lump)						
Insulation resistance	DC500V, \geq 500M Ω (Aperture-output wire end in a lump)						
Operating temperature	-10°C ~ +60°C , ≤ 85%RH, no condensation						
Storage temperature	$-15^{\circ}\text{C} \sim +65^{\circ}\text{C}$, $\leq 85\%\text{RH}$, no condensation						
Secondary wire	VVC- φ 0.18X7-4C ℓ =300						
Mass	approximately 35g	approximately 60g	approximately 150g	approximately 190g			

- (1) After overcurrent more than rating current, offset drift occur by proportional to that current, with hysteresis of core.
- (2) Recommend to use more than 5% of nominal for practical range, because output includes various variation factors.
 (3) Do not beyond rating current for continuous use
- (4) There is possibility of heating by core loss for the application of high frequency and high current. Please check by contacting us. (250APCLS, 500APCLS)

2016.7

Ta=25°C

HCS-10-50APCLS characteristic

2016.7