

High Performance RF Module for MIOTY 868 MHz

ADVANCE INFORMATION

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Product Description

The RC1882CEF-MIOTY module is a compact surface-mounted product that measures only 12.7 x 25.4 x 3.7 mm. The module contains a communication controller with embedded MIOTY protocol software and is pre-certified for operation under the European and US/FCC regulations. Custom variants can be offered with customized functionalities. How to use the embedded MIOTY protocol is described in the MIOTY User Manual.

Applications

- Large scale massive LPWAN
- Smart Metering
- Smart City
- · Long range sensor applications
- Industry 4.0

Features

- MIOTY compliant
- ETSI technical specification TS 103 357 Low Throughput Network (LTN)
- Massive IoT deployment, > 1M messages/day
- · Long range, high reliability
- Ultra narrowband, high-performance radio
- · High sensitivity and high selectivity
- High blocking properties
- Completely shielded module
- Pin compatible with other products from Radiocrafts
- 12.7 x 25.4 x 3.7 mm compact module for SMD mounting
- 1.8 3.8 V supply voltage
- Ultra low power modes for extended battery operation
- Conforms with EU RED directive (EN 300 220, EN 301 489, EN)

Part Name Overview

Part name	RF Frequency band	Max output power	VCC
RC1882CEF-MIOTY1	868 MHz	14 dBm	+3.3V
RC1882CEF-MIOTY2	868 MHz/915 MHz	14 dBm	+3.3V
RC1892HPCF-MIOTY2	868 MHz/915 MHz	27 dBm	+3.3V

Quick Reference Data (typical at 3.6V, 868 MHz, 400 b/s)

Parameter	RC1882CE	F-MIOTYx	RC1892HPCF-MIOTY2	Unit
Frequency band	862-870	902-928	902-928	MHz
Max output power	14	14	27 (TBC)	dBm
Sensitivity (PER 10 %) @ 400b/s	-129	-129	-130	dBm
Supply voltage	1.8- 3.8	1.8- 3.8	1.8 - 3.8	V
Current consumption, RX/TX	6.0 / 25	6.0 / 25	8/250	mA
Current consumption, Shutdown	1	1	1	uA
Flash memory Total User Application	352 128 (TBC)	352 128 (TBC)	352 128 (TBC)	kB (MIOTY2)
RAM				
Total	80	80	80	kB
User Application	32 (TBC)	32 (TBC)	32 (TBC)	(MIOTY2)
Internal EEPROM (optional)	4	4	4	kB
Internal SPI Flash (optional)	1024	1024	1024	kB
Operating Temperature	-30 to +85	-30 to +85	-30 to +85	°C

Functional behaviour

The module is offered in two different feature sets, MIOTY1 and MIOTY2

MIOTY1

Module operate as a radio modem with serial UART interface and AT command set

UART setup: UART-TXD = pin 5 UART-RXD = pin 6

Default baud rate 115200 baud/s

Data bits: 8 Stop bit: 1 Parity: none

Support mode EU0 as transmit only.

Example:

AT-U command to send a unicast packet AT-U=5 46726F6465

5 is length byte and 46726F6465 are the 5 byte sent.

Complete AT command interface will be available upon release

MIOTY2

Autonomous module including application

A customer specific application run inside the module reading sensors, processing data and transmitting and receiving data via RF.

The MIOTY2 module program memory is divided in 3 different segments.

- The bootloader
- The platform image
- Application code space

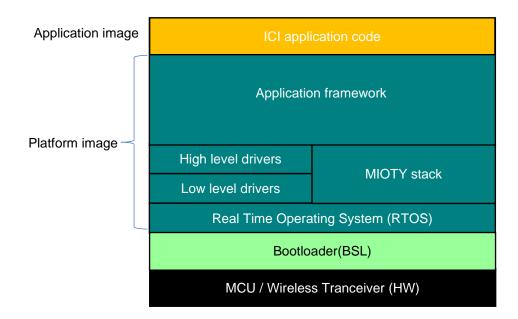


Figure 1. System overview

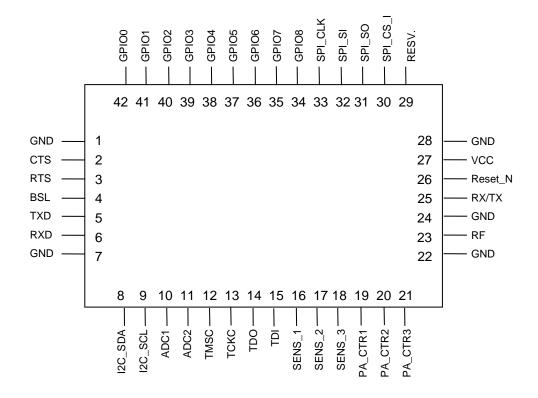
The platform image is the main firmware part and includes an operating system, MIOTY stack, drivers and application framework. This firmware image is preloaded from Radiocrafts and newer revisions will be made available from Radiocrafts as an encrypted image. When downloading a new platform image through the bootloader, the image will be decrypted internally in the module.

The application code space has available 128 kB of flash space and 32 kB of static variables.

Intelligent C-programmable I/O (ICI) for MIOTY2

The ICI programming concept is described in detail in MIOTY SDK documentation. Below is shown an example application that read a temperature sensor every 10 seconds and send data to the concentrator. This is a very small example with only 39 code lines to build a complete sensor device.

```
Example : i:zi code
#include "MIOTY_app.h"
/****** Constants *******/
#define SHT35_I2C_ADDRESS 0x44
#define SENSOR ID SHT35 0x01
/****** Private Variables ********/
static TimerId readSensorTimer;
static uint16 t temperature;
static uint16 t humidity;
static uint8 \overline{t} temperature 1, temperature h, humidity 1, humidity h;
/****** Private Function Declarations **********/
static void readSensor(void);
/***** Public Functions ********/
/**
* Setup() is called by the framework on startup
void Setup()
    Network.setFreqBand(EU0);
    Network.connectToGateway(true);
    I2C.init(I2C 400KHZ);
    readSensorTimer = Timer.create(PERIODIC, 10*SECOND, readSensor);
    Timer.start(readSensorTimer);
}
/****** Private Functions *********/
static void readSensor(void)
{
    uint8 t writeBuffer[2] = \{0x2C, 0x06\};
    uint8 t readBuffer[6];
    SPR Status status = I2C.transfer(SHT35 I2C ADDRESS, writeBuffer, sizeof(writeBuffer),readBuffer,
sizeof(readBuffer));
   if (SPR_OK == status)
        // unpacks the data from the byte buffer into 16-bit integer variables
       uint16 t temperature raw = Util.unpack uint16 msb(readBuffer, 0);
       uint16_t humidity_raw = Util.unpack_uint16_msb(readBuffer, 3);
        temperature = (uint16 t)((uint32 t)temperature raw*17500/0xFFFF - 4500);
        humidity = (uint16 t) ((uint32 t) humidity raw*10000/0xFFFF);
    temperature_l=(uint8_t) (temperature&&0x00FF);
    temperature_h=(uint8_t) (temperature>>8);
    humidity_l=(uint8_t)(humidity&&0x00FF);
    humidity_h=(uint8_t)(humidity>>8);
    uint8 t message[] = {SENSOR ID SHT35, temperature 1, temperature h,humidity 1, humidity h);
    Network.send(sizeof(message), message);
```



Bootloader

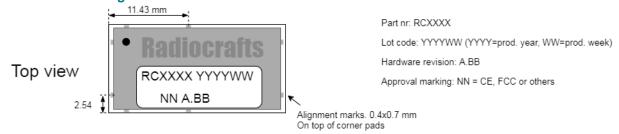
Both MIOTY1 and MIOTY2 modules are supplied with the same bootloader.

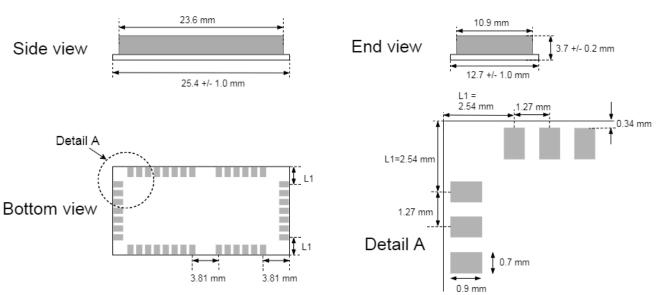
The bootloader is preloaded from Radiocrafts. It allows user to upload new platform image or unique application image¹ generated by each customer.

The bootloader also allows user to program unique encryption keys into the device. These keys are not possible to read out. The bootloader uses the standard UART port and operate at 115 200 Baud.

Pin Assignment

¹ MIOTY2 only


Pin Description


Pin no	Pin name	Description
	OND	
1	GND	System ground
2	CTS	UART flow control
3	RTS	UART flow control
4	BSL	Enable boot strap loader
5	TXD	Configurable I/O pin
6	RXD	Configurable I/O pin
7	GND	System ground
8	I2C SDA	I2C SDA, internal 4.7k pullup
9	I2C SCL	I2C SCL, internal 4.7k pullup
10	ADC1	Analog input
11	ADC2	Analog input
12	TMSC	JTAG interface
13	TCKC	JTAG interface
14	TDO	JTAG interface
15	TDI	JTAG interface
16	SENS_1	Reserved for future use
17	SENS_2	Reserved for future use
18	SENS_3	Reserved for future use
19	PA_CTR1	Power Amplifier Control – High when radio is active. Low when
20	PA_CTR2	idle.
21	PA_CTR3	Power Amplifier Control – High when radio is active and transmitting. Low when receiving.
22	GND	System ground
23	RF	RF I/O connection to antenna
24	GND	System ground
25	RX/TX	Not connected
26	RESET_N	Reset (Active low)
27	VCC	Supply voltage
28	GND	System ground
29	RESV.	Reserved for future use
30	SPI_CS_I	SPI CS for internal flash - DO NOT CONNECT
31	SPI_SO	SPI bus
32	SPI_SI	SPI bus
33	SPI_CLK	SPI bus
34	GPIO 8	
35	GPIO_7	1
36	GPIO_6	1
37	GPIO_5	1
38	GPIO 4	General purpose I/O pin. Pin is tristated by module during
39	GPIO_3	bootloading. Add pull-up if used as SPI chip select(CS) for
40	GPIO 2	external SPI devices.
41	GPIO_1	1
42	GPIO 0	1
		torface. They can be configured atherwise, but are connected to an entional internal

Note 1: Pins 8 and 9 are suggested as I2C interface. They can be configured otherwise, but are connected to an optional internal EEPROM with I2C address = 000. It is recommended to leave these pins as I2C. Sensors and actuators or any other I2C device can be connected to these pins and accessed from the module.

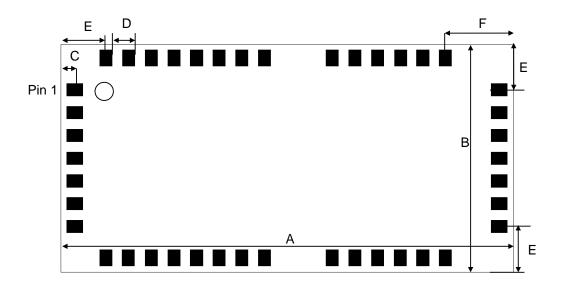
Mechanical Drawing

Mechanical Dimensions

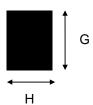
The module size is 12.7 x 25.4 x 3.7 mm

Carrier Tape and Reel Specification

Carrier tape and reel is in accordance with EIA Specification 481.


Tape width	Component pitch	Hole pitch	Reel diameter	Units per reel
44 mm	16 mm	4 mm	13"	Max 1000

PCB Layout Recommendations


The recommended layout pads for the module are shown in the figure below.

The circle in upper left corner is an orientation mark only, and should not be a part of the copper pattern.

Dimention	Length [mm] (mil)	Comment
Α	25.4 (1000)	Length of module
В	12.7 (500)	Width of module
С	0.79 (31)	Module edge vs centre of pad (Valid for all pads)
D	1.27 (50)	Pad to pad distance
Е	2.54 (100)	Modul edge to pad (centre)
F	3.81 (150)	Modul edge to pad (centre)
G	0.9 (35.4)	Length of pad/recommend footprint pad
Н	0.7 (27.6)	Width of pad/recommend footprint pad

Recommended pad design is shown below.

The recommended footprint for solder paste stencil is a one-to-one mapping between the LGA pad on module and the footprint.

For prototype build a solder hot plate is recommended. If the prototype is soldered manually by soldering iron, it is recommend to extend the pads of the footprint out from the module to make is accessible for a soldering iron.

A PCB with two or more layers and with a solid ground plane in one of the inner- or bottom layer(s) is recommended. All GND-pins of the module shall be connected to this ground plane with vias with shortest possible routing, one via per GND-pin.

Routing or vias under the module is not recommended as per IPC-recommendation. If any routing or vias is required under the module, the routing and vias must be covered with solder resist to prevent short circuiting of the test pads. It is recommended that vias are tented.

Reserved pins should be soldered to the pads, but the pads must be left floating electrically (no connection).

Note that Radiocrafts technical support team is available for free-of-charge schematic- and layout review of your design.

Soldering Profile Recommendation

JEDEC standard IPC/JEDEC J-STD-020D.1 (page 7 and 8), Pb-Free Assembly is recommended.

The standard requires that the heat dissipated in the "surroundings" on the PCB is taken into account. The peak temperature should be adjusted so that it is within the window specified in the standard for the actual motherboard.

Aperture for paste stencil is normally areal-reduced by 20-35%, please consult your production facility for best experience aperture reduction. Nominal stencil thickness of 0.1-0.12 mm recommended.

Absolute Maximum Ratings

Absolute maximum rating	,			
Parameter	Min	Max	Unit	
Supply voltage, VCC	-0.3	4.1	V	
Voltage on any pin	-0.3	VCC + 0.3	V	
		(max 4.1)		Caution ! ESD sensitive device.
Input RF level		10	dBm	Precaution should be used when
Storage temperature	-40	150	°C	 handling the device in order to prevent permanent damage.
Operating temperature	-30	85	°C	

Under no circumstances the absolute maximum ratings given above should be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Disclaimer

Radiocrafts AS believes the information contained herein is correct and accurate at the time of this printing. However, Radiocrafts AS reserves the right to make changes to this product without notice. Radiocrafts AS does not assume any responsibility for the use of the described product; neither does it convey any license under its patent rights, or the rights of others. The latest updates are available at the Radiocrafts website or by contacting Radiocrafts directly.

As far as possible, major changes of product specifications and functionality, will be stated in product specific Errata Notes published at the Radiocrafts website. Customers are encouraged to check regularly for the most recent updates on products and support tools.

Trademarks

All trademarks, registered trademarks and product names are the sole property of their respective owners.

Life Support Policy

This Radiocrafts product is not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Radiocrafts AS customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Radiocrafts AS for any damages resulting from any improper use or sale.

Radiocrafts Webpage

For more info go to our web page: https://radiocrafts.com/

There you can find Knowledge base and Document Library that includes Application notes, Whitepapers, Declaration of Conformity, User Manuals, Data Sheet and more.

Contact Information

Web site: http://www.radiocrafts.com

Address: Radiocrafts AS Sandakerveien 64 NO-0484 OSLO NORWAY

Tel: +47 4000 5195
Fax: +47 22 71 29 15
E-mail: sales@radiocrafts.com

© 2020, Radiocrafts AS. All rights reserved.